Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
EClinicalMedicine ; 58:101881-101881, 2023.
Article in English | EuropePMC | ID: covidwho-2260195

ABSTRACT

Background Preoperative COVID-19 has been associated with excess postoperative morbi-mortality. Consequently, guidelines were developed that recommended the postponement of surgery for at least 7 weeks after the infection. We hypothesised that vaccination against the SARS-CoV-2 and the large predominance of the Omicron variant attenuated the effect of a preoperative COVID-19 on the occurrence of postoperative respiratory morbidity. Methods We conducted a prospective cohort study in 41 French centres between 15 March and 30 May 2022 (ClinicalTrials NCT05336110), aimed at comparing the postoperative respiratory morbidity between patients with and without preoperative COVID-19 within 8 weeks prior to surgery. The primary outcome was a composite outcome combining the occurrence of pneumonia, acute respiratory failure, unexpected mechanical ventilation, and pulmonary embolism within the first 30 postoperative days. Secondary outcomes were 30-day mortality, hospital length-of-stay, readmissions, and non-respiratory infections. The sample size was determined to have 90% power to identify a doubling of the primary outcome rate. Adjusted analyses were performed using propensity score modelling and inverse probability weighting. Findings Of the 4928 patients assessed for the primary outcome, of whom 92.4% were vaccinated against the SARS-CoV-2, 705 had preoperative COVID-19. The primary outcome was reported in 140 (2.8%) patients. An 8-week preoperative COVID-19 was not associated with increased postoperative respiratory morbidity (odds ratio 1.08 [95% CI 0.48–2.13];p = 0.83). None of the secondary outcomes differed between the two groups. Sensitivity analyses concerning the timing between COVID-19 and surgery, and the clinical presentations of preoperative COVID-19 did not show any association with the primary outcome, except for COVID-19 patients with ongoing symptoms the day of surgery (OR 4.29 [1.02–15.8];p = 0.04). Interpretation In our Omicron-predominant, highly immunised population undergoing general surgery, a preoperative COVID-19 was not associated with increased postoperative respiratory morbidity. Funding The study was fully funded by the 10.13039/501100014262French Society of Anaesthesiology and Intensive Care Medicine (SFAR).

2.
Anaesth Crit Care Pain Med ; 42(1): 101184, 2023 02.
Article in English | MEDLINE | ID: covidwho-2149185

ABSTRACT

BACKGROUND: COVID-19 patients requiring mechanical ventilation are particularly at risk of developing ventilator-associated pneumonia (VAP). Risk factors and the prognostic impact of developing VAP during critical COVID-19 have not been fully documented. METHODS: Patients invasively ventilated for at least 48 h from the prospective multicentre COVID-ICU database were included in the analyses. Cause-specific Cox regression models were used to determine factors associated with the occurrence of VAP. Cox-regression multivariable models were used to determine VAP prognosis. Risk factors and the prognostic impact of early vs. late VAP, and Pseudomonas-related vs. non-Pseudomonas-related VAP were also determined. MAIN FINDINGS: 3388 patients were analysed (63 [55-70] years, 75.8% males). VAP occurred in 1523/3388 (45.5%) patients after 7 [5-9] days of ventilation. Identified bacteria were mainly Enterobacteriaceae followed by Staphylococcus aureus and Pseudomonas aeruginosa. VAP risk factors were male gender (Hazard Ratio (HR) 1.26, 95% Confidence Interval [1.09-1.46]), concomitant bacterial pneumonia at ICU admission (HR 1.36 [1.10-1.67]), PaO2/FiO2 ratio at intubation (HR 0.99 [0.98-0.99] per 10 mmHg increase), neuromuscular-blocking agents (HR 0.89 [0.76-0.998]), and corticosteroids (HR 1.27 [1.09-1.47]). VAP was associated with 90-mortality (HR 1.34 [1.16-1.55]), predominantly due to late VAP (HR 1.51 [1.26-1.81]). The impact of Pseudomonas-related and non-Pseudomonas-related VAP on mortality was similar. CONCLUSION: VAP affected almost half of mechanically ventilated COVID-19 patients. Several risk factors have been identified, among which modifiable risk factors deserve further investigation. VAP had a specific negative impact on 90-day mortality, particularly when it occurred between the end of the first week and the third week of ventilation.


Subject(s)
COVID-19 , Pneumonia, Ventilator-Associated , Humans , Male , Female , Pneumonia, Ventilator-Associated/epidemiology , Pneumonia, Ventilator-Associated/microbiology , Prospective Studies , COVID-19/complications , COVID-19/epidemiology , COVID-19/therapy , Respiration, Artificial/adverse effects , Prognosis , Risk Factors , Intensive Care Units
3.
Immunol Lett ; 251-252: 107-112, 2022 Nov 13.
Article in English | MEDLINE | ID: covidwho-2105129

ABSTRACT

Acute respiratory distress syndrome (ARDS) alveolar environment induced a pro-repair anti-inflammatory macrophage polarization. However, patients with coronavirus disease 2019 (COVID-19) ARDS frequently exhibit a huge lung inflammation and present pulmonary scars and fibrosis more frequently than patients with non-COVID-19 ARDS, suggesting that the COVID-19 ARDS alveolar environment may drive a more inflammatory or pro-fibrotic macrophage polarization. This study aimed to determine the effect of the COVID-19 ARDS alveolar environment on macrophage polarization. The main finding was that broncho-alveolar lavage fluids (BALF) from patients with early COVID-19 ARDS drove an alternative anti-inflammatory polarization in normal monocyte-derived macrophages; characterized by increased expressions of CD163 and CD16 mRNA (3.4 [2.7-7.2] and 4.7 [2.6-5.8] fold saline control, respectively - p = 0.02), and a secretory pattern close to that of macrophages stimulated with IL-10, with the specificity of an increased production of IL-6. This particular alternative pattern was specific to early ARDS (compared with late ARDS) and of COVID-19 ARDS (compared with moderate COVID-19). The early COVID-19 ARDS alveolar environment drives an alternative anti-inflammatory macrophage polarization with the specificity of inducing macrophage production of IL-6.

4.
Anaesth Crit Care Pain Med ; 39(6): 743-744, 2020 12.
Article in English | MEDLINE | ID: covidwho-1382141
5.
J Clin Med ; 11(10)2022 May 16.
Article in English | MEDLINE | ID: covidwho-1872095

ABSTRACT

Preclinical studies have shown that volatile anesthetics may have beneficial effects on injured lungs, and pilot clinical data support improved arterial oxygenation, attenuated inflammation, and decreased lung epithelial injury in patients with acute respiratory distress syndrome (ARDS) receiving inhaled sevoflurane compared to intravenous midazolam. Whether sevoflurane is effective in improving clinical outcomes among patients with ARDS is unknown, and the benefits and risks of inhaled sedation in ARDS require further evaluation. Here, we describe the SESAR (Sevoflurane for Sedation in ARDS) trial designed to address this question. SESAR is a two-arm, investigator-initiated, multicenter, prospective, randomized, stratified, parallel-group clinical trial with blinded outcome assessment designed to test the efficacy of sedation with sevoflurane compared to intravenous propofol in patients with moderate to severe ARDS. The primary outcome is the number of days alive and off the ventilator at 28 days, considering death as a competing event, and the key secondary outcome is 90 day survival. The planned enrollment is 700 adult participants at 37 French academic and non-academic centers. Safety and long-term outcomes will be evaluated, and biomarker measurements will help better understand mechanisms of action. The trial is funded by the French Ministry of Health, the European Society of Anaesthesiology, and Sedana Medical.

7.
Lancet Respir Med ; 10(2): 158-166, 2022 02.
Article in English | MEDLINE | ID: covidwho-1751525

ABSTRACT

BACKGROUND: Acute respiratory distress syndrome (ARDS) is a major complication of COVID-19 and is associated with high mortality and morbidity. We aimed to assess whether intravenous immunoglobulins (IVIG) could improve outcomes by reducing inflammation-mediated lung injury. METHODS: In this multicentre, double-blind, placebo-controlled trial, done at 43 centres in France, we randomly assigned patients (1:1) receiving invasive mechanical ventilation for up to 72 h with PCR confirmed COVID-19 and associated moderate-to-severe ARDS to receive either IVIG (2 g/kg over 4 days) or placebo. Random assignment was done with a web-based system and was stratified according to the participating centre and the duration of invasive mechanical ventilation before inclusion in the trial (<12 h, 12-24 h, and >24-72 h), and treatment was administered within the first 96 h of invasive mechanical ventilation. To minimise the risk of adverse events, the IVIG administration was divided into four perfusions of 0·5 g/kg each administered over at least 8 hours. Patients in the placebo group received an equivalent volume of sodium chloride 0·9% (10 mL/kg) over the same period. The primary outcome was the number of ventilation-free days by day 28, assessed according to the intention-to-treat principle. This trial was registered on ClinicalTrials.gov, NCT04350580. FINDINGS: Between April 3, and October 20, 2020, 146 patients (43 [29%] women) were eligible for inclusion and randomly assigned: 69 (47%) patients to the IVIG group and 77 (53%) to the placebo group. The intention-to-treat analysis showed no statistical difference in the median number of ventilation-free days at day 28 between the IVIG group (0·0 [IQR 0·0-8·0]) and the placebo group (0·0 [0·0-6·0]; difference estimate 0·0 [0·0-0·0]; p=0·21). Serious adverse events were more frequent in the IVIG group (78 events in 22 [32%] patients) than in the placebo group (47 events in 15 [20%] patients; p=0·089). INTERPRETATION: In patients with COVID-19 who received invasive mechanical ventilation for moderate-to-severe ARDS, IVIG did not improve clinical outcomes at day 28 and tended to be associated with an increased frequency of serious adverse events, although not significant. The effect of IVIGs on earlier disease stages of COVID-19 should be assessed in future trials. FUNDING: Programme Hospitalier de Recherche Clinique.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Double-Blind Method , Female , Humans , Immunoglobulins, Intravenous/adverse effects , Iron-Dextran Complex , Respiratory Distress Syndrome/drug therapy , SARS-CoV-2 , Treatment Outcome
8.
J Clin Med ; 10(8)2021 Apr 08.
Article in English | MEDLINE | ID: covidwho-1526823

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leads to 5% to 16% hospitalization in intensive care units (ICU) and is associated with 23% to 75% of kidney impairments, including acute kidney injury (AKI). The current work aims to precisely characterize the renal impairment associated to SARS-CoV-2 in ICU patients. Forty-two patients consecutively admitted to the ICU of a French university hospital who tested positive for SARS-CoV-2 between 25 March 2020, and 29 April 2020, were included and classified in categories according to their renal function. Complete renal profiles and evolution during ICU stay were fully characterized in 34 patients. Univariate analyses were performed to determine risk factors associated with AKI. In a second step, we conducted a logistic regression model with inverse probability of treatment weighting (IPTW) analyses to assess major comorbidities as predictors of AKI. Thirty-two patients (94.1%) met diagnostic criteria for intrinsic renal injury with a mixed pattern of tubular and glomerular injuries within the first week of ICU admission, which lasted upon discharge. During their ICU stay, 24 patients (57.1%) presented AKI which was associated with increased mortality (p = 0.007), hemodynamic failure (p = 0.022), and more altered clearance at hospital discharge (p = 0.001). AKI occurrence was associated with lower pH (p = 0.024), higher PaCO2 (CO2 partial pressure in the arterial blood) (p = 0.027), PEEP (positive end-expiratory pressure) (p = 0.027), procalcitonin (p = 0.015), and CRP (C-reactive protein) (p = 0.045) on ICU admission. AKI was found to be independently associated with chronic kidney disease (adjusted OR (odd ratio) 5.97 (2.1-19.69), p = 0.00149). Critical SARS-CoV-2 infection is associated with persistent intrinsic renal injury and AKI, which is a risk factor of mortality. Mechanical ventilation settings seem to be a critical factor of kidney impairment.

9.
Clin Infect Dis ; 73(7): e1762-e1765, 2021 10 05.
Article in English | MEDLINE | ID: covidwho-1455264

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a newly discovered virus for which remdesivir is the only antiviral available. We report the occurrence of a mutation in RdRP (D484Y) following treatment with remdesivir in a 76-year-old female with post-rituximab B-cell immunodeficiency and persistent SARS-CoV-2 viremia. A cure was achieved after supplementation with convalescent plasma.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , RNA-Dependent RNA Polymerase , Adenosine Monophosphate/analogs & derivatives , Aged , Alanine/analogs & derivatives , B-Lymphocytes , COVID-19/therapy , Female , Humans , Immunization, Passive , Mutation , SARS-CoV-2 , COVID-19 Serotherapy
10.
Am J Physiol Lung Cell Mol Physiol ; 321(5): L847-L858, 2021 11 01.
Article in English | MEDLINE | ID: covidwho-1403121

ABSTRACT

Increased blood fibrocytes are associated with a poor prognosis in fibrotic lung diseases. We aimed to determine whether the percentage of circulating fibrocytes could be predictive of severity and prognosis during coronavirus disease 2019 (COVID-19) pneumonia. Blood fibrocytes were quantified by flow cytometry as CD45+/CD15-/CD34+/collagen-1+ cells in patients hospitalized for COVID-19 pneumonia. In a subgroup of patients admitted in an intensive care unit (ICU), fibrocytes were quantified in blood and bronchoalveolar lavage (BAL). Serum amyloid P (SAP), transforming growth factor-ß1 (TGF-ß1), CXCL12, CCL2, and FGF2 concentrations were measured. We included 57 patients in the hospitalized group (median age = 59 yr [23-87]) and 16 individuals as healthy controls. The median percentage of circulating fibrocytes was higher in the patients compared with the controls (3.6% [0.2-9.2] vs. 2.1% [0.9-5.1], P = 0.04). Blood fibrocyte count was lower in the six patients who died compared with the survivors (1.6% [0.2-4.4] vs. 3.7% [0.6-9.2], P = 0.02). Initial fibrocyte count was higher in patients showing a complete lung computed tomography (CT) resolution at 3 mo. Circulating fibrocyte count was decreased in the ICU group (0.8% [0.1-2.0]), whereas BAL fibrocyte count was 6.7% (2.2-15.4). Serum SAP and TGF-ß1 concentrations were increased in hospitalized patients. SAP was also increased in ICU patients. CXCL12 and CCL2 were increased in ICU patients and negatively correlated with circulating fibrocyte count. We conclude that circulating fibrocytes were increased in patients hospitalized for COVID-19 pneumonia, and a lower fibrocyte count was associated with an increased risk of death and a slower resolution of lung CT opacities.


Subject(s)
Antigens, CD/blood , Blood Cells/metabolism , COVID-19/blood , Cytokines/blood , SARS-CoV-2/metabolism , Serum Amyloid A Protein/metabolism , Adult , Aged , Aged, 80 and over , Blood Cell Count , COVID-19/diagnosis , COVID-19/diagnostic imaging , Female , Humans , Male , Middle Aged , Prognosis , Severity of Illness Index , Tomography, X-Ray Computed
13.
Anaesth Crit Care Pain Med ; 40(4): 100931, 2021 08.
Article in English | MEDLINE | ID: covidwho-1306763

ABSTRACT

AIM: Describing acute respiratory distress syndrome patterns, therapeutics management, and outcomes of ICU COVID-19 patients and indentifying risk factors of 28-day mortality. METHODS: Prospective multicentre, cohort study conducted in 29 French ICUs. Baseline characteristics, comorbidities, adjunctive therapies, ventilatory support at ICU admission and survival data were collected. RESULTS: From March to July 2020, 966 patients were enrolled with a median age of 66 (interquartile range 58-73) years and a median SAPS II of 37 (29-48). During the first 24 h of ICU admission, COVID-19 patients received one of the following respiratory supports: mechanical ventilation for 559 (58%), standard oxygen therapy for 228 (24%) and high-flow nasal cannula (HFNC) for 179 (19%) patients. Overall, 721 (75%) patients were mechanically ventilated during their ICU stay. Prone positioning and neuromuscular blocking agents were used in 494 (51%) and 460 (48%) patients, respectively. Bacterial co-infections and ventilator-associated pneumonia were diagnosed in 79 (3%) and 411 (43%) patients, respectively. The overall 28-day mortality was 18%. Age, pre-existing comorbidities, severity of respiratory failure and the absence of antiviral therapy on admission were identified as independent predictors of 28-day outcome. CONCLUSION: Severity of hypoxaemia on admission, older age (> 70 years), cardiovascular and renal comorbidities were associated with worse outcome in COVID-19 patients. Antiviral treatment on admission was identified as a protective factor for 28-day mortality. Ascertaining the outcomes of critically ill COVID-19 patients is crucial to optimise hospital and ICU resources and provide the appropriate intensity level of care.


Subject(s)
COVID-19 , SARS-CoV-2 , Aged , Cohort Studies , Critical Care , Humans , Intensive Care Units , Middle Aged , Prospective Studies , Respiration, Artificial
14.
Ann Intensive Care ; 11(1): 9, 2021 Jan 13.
Article in English | MEDLINE | ID: covidwho-1029162

ABSTRACT

BACKGROUND: SARS coronavirus 2 (SARS-CoV-2) is responsible for high morbidity and mortality worldwide, mostly due to the exacerbated inflammatory response observed in critically ill patients. However, little is known about the kinetics of the systemic immune response and its association with survival in SARS-CoV-2+ patients admitted in ICU. We aimed to compare the immuno-inflammatory features according to organ failure severity and in-ICU mortality. METHODS: Six-week multicentre study (N = 3) including SARS-CoV-2+ patients admitted in ICU. Analysis of plasma biomarkers at days 0 and 3-4 according to organ failure worsening (increase in SOFA score) and 60-day mortality. RESULTS: 101 patients were included. Patients had severe respiratory diseases with PaO2/FiO2 of 155 [111-251] mmHg), SAPS II of 37 [31-45] and SOFA score of 4 [3-7]. Eighty-three patients (83%) required endotracheal intubation/mechanical ventilation and among them, 64% were treated with prone position. IL-1ß was barely detectable. Baseline IL-6 levels positively correlated with organ failure severity. Baseline IL-6 and CRP levels were significantly higher in patients in the worsening group than in the non-worsening group (278 [70-622] vs. 71 [29-153] pg/mL, P < 0.01; and 178 [100-295] vs. 100 [37-213] mg/L, P < 0.05, respectively). Baseline IL-6 and CRP levels were significantly higher in non-survivors compared to survivors but fibrinogen levels and lymphocyte counts were not different between groups. After adjustment on SOFA score and time from symptom onset to first dosage, IL-6 and CRP remained significantly associated with mortality. IL-6 changes between Day 0 and Day 3-4 were not different according to the outcome. A contrario, kinetics of CRP and lymphocyte count were different between survivors and non-survivors. CONCLUSIONS: In SARS-CoV-2+ patients admitted in ICU, a systemic pro-inflammatory signature was associated with clinical worsening and 60-day mortality.

15.
La Presse Médicale Formation ; 2021.
Article in English | ScienceDirect | ID: covidwho-1009722
16.
Blood ; 136(20): 2290-2295, 2020 11 12.
Article in English | MEDLINE | ID: covidwho-950941

ABSTRACT

Anti-CD20 monoclonal antibodies are widely used for the treatment of hematological malignancies or autoimmune disease but may be responsible for a secondary humoral deficiency. In the context of COVID-19 infection, this may prevent the elicitation of a specific SARS-CoV-2 antibody response. We report a series of 17 consecutive patients with profound B-cell lymphopenia and prolonged COVID-19 symptoms, negative immunoglobulin G (IgG)-IgM SARS-CoV-2 serology, and positive RNAemia measured by digital polymerase chain reaction who were treated with 4 units of COVID-19 convalescent plasma. Within 48 hours of transfusion, all but 1 patient experienced an improvement of clinical symptoms. The inflammatory syndrome abated within a week. Only 1 patient who needed mechanical ventilation for severe COVID-19 disease died of bacterial pneumonia. SARS-CoV-2 RNAemia decreased to below the sensitivity threshold in all 9 evaluated patients. In 3 patients, virus-specific T-cell responses were analyzed using T-cell enzyme-linked immunospot assay before convalescent plasma transfusion. All showed a maintained SARS-CoV-2 T-cell response and poor cross-response to other coronaviruses. No adverse event was reported. Convalescent plasma with anti-SARS-CoV-2 antibodies appears to be a very promising approach in the context of protracted COVID-19 symptoms in patients unable to mount a specific humoral response to SARS-CoV-2.


Subject(s)
Antibodies, Viral/immunology , B-Lymphocytes/pathology , Betacoronavirus/immunology , Coronavirus Infections/immunology , Immune Sera/administration & dosage , Lymphopenia/therapy , Pneumonia, Viral/immunology , Adult , Aged , B-Lymphocytes/immunology , Blood Component Transfusion , COVID-19 , Coronavirus Infections/blood , Coronavirus Infections/therapy , Coronavirus Infections/virology , Female , France , Hematologic Neoplasms/complications , Humans , Immunization, Passive , Lymphopenia/etiology , Lymphopenia/pathology , Male , Middle Aged , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/therapy , Pneumonia, Viral/virology , SARS-CoV-2 , COVID-19 Serotherapy
17.
Prat Anesth Reanim ; 24(4): 225-229, 2020 Sep.
Article in French | MEDLINE | ID: covidwho-765502

ABSTRACT

SARS-coV2 infection may induce a severe pneumonia that may lead to an acute respiratory distress syndrome. Hypoxaemia is the key symptom of the disease but other features are different such as pulmonary compliance that is most of the time initially normal. The mechanisms of the pulmonary damage are not completely understood. A new ventilation strategy has been set up to prevent ventilator induced lung injury (VILI).

SELECTION OF CITATIONS
SEARCH DETAIL